Polynomial Decomposition and Its Applications
نویسندگان
چکیده
We present a simple algorithm for decomposing a polynomial H(x) into two constituent polynomials H(x) = f(g(x)), if such exist. Reversing a composition of two polynomials is shown to be reducible to a set of non-linear equations with a simple structure. While, in general, the solution of non-linear equations is quite complicated, we show that in this system the solution can be computed exactly using symbolic recurrence relations. We demonstrate the effectiveness of this result using some illustrative examples and also discuss interesting applications in geometric modeling: Reparameterization as an insecure watermarking tool and verifying the identity of a curve in two different representations.
منابع مشابه
Symbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملRelationship between Coefficients of Characteristic Polynomial and Matching Polynomial of Regular Graphs and its Applications
ABSTRACT. Suppose G is a graph, A(G) its adjacency matrix and f(G, x)=x^n+a_(n-1)x^(n-1)+... is the characteristic polynomial of G. The matching polynomial of G is defined as M(G, x) = x^n-m(G,1)x^(n-2) + ... where m(G,k) is the number of k-matchings in G. In this paper, we determine the relationship between 2k-th coefficient of characteristic polynomial, a_(2k), and k-th coefficient of matchin...
متن کاملNumerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملDetermination of a Matrix Function in the Form of f(A)=g(q(A)) Where g(x) Is a Transcendental Function and q(x) Is a Polynomial Function of Large Degree Using the Minimal Polynomial
Matrix functions are used in many areas of linear algebra and arise in numerical applications in science and engineering. In this paper, we introduce an effective approach for determining matrix function f(A)=g(q(A)) of a square matrix A, where q is a polynomial function from a degree of m and also function g can be a transcendental function. Computing a matrix function f(A) will be time- consu...
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملکاربرد ماشین بردار پشتیبان در طبقهبندی کاربری اراضی حوزه چشمه کیله- چالکرود
Classification of land use extraction always been one of the most important applications of remote sensing and why different methods are created. Over time and with greater accuracy were developed more advanced methods that increase the accuracy and the extraction classes that were closer together in terms of quality are better. SVM is one of these methods in the study of this method for the ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003